| Science
Objective | Science
Measurement
Requirement | Instrument
Functional
Requirement | Mission
Functional
Requirement | |--|--|---|--| | Probe the energetics and dynamics of high luminosity regions | Spectrally-resolved
maps of the 63
micron [OI] line | 4.7 THz heterodyne receivers | SOFIA required
for measurable
atmospheric
transmission | | Observe global
environments of star
formation and cloud
dissipation | Large area maps
spanning
significant fractions
of a square degree | Mapping speed >100 arcmin² per flight leg requires array receiver with 16 spatial pixels | SOFIA flight legs
~3 hours in order to
complete a map | | Spatially resolve cloud (sub) structure to Galactic Center | <10" angular resolution | >2m primary
antenna | 2" pointing
knowledge | | Spectrally resolve interstellar cloud substructure | < 1 km/s velocity resolution | Spectrometers with <16 MHz resolution | 1 Mbps data rate | | Span large range of
Galactic radial
velocities | >300 km/s
instantaneous
velocity coverage | IF & spectrometer bandwidth >5 GHz per pixel | 1 Mbps data rate | | Measure warm gas participating in large scale shocks & photo-dissociation fronts | Must detect
N(O)> $2x10^{17}$ cm ⁻² ,
or T _B <1 K kms ⁻¹ in
30 seconds | T _{rec} < 2000K DSB:
Hot electron
bolometer mixer
receivers at 4 Kelvin | Closed cycle 4K
cryostat
Optimal SOFIA
altitude >39 kft |