
An Aries Software Roadmap
January 2004

1 Introduction

ARIES is a high resolution infrared imager and spectrometer that will exploit the capabil-
ities of adaptive optics (AO) at the upgraded 6.5-meter reflector of the MMT Observatory
on Mt. Hopkins. It consists of four imaging scales that yield diffraction-limited perfor-
mance and two principal spectroscopy modes that offer resolving powers of

���������	�
�
������������������

from 1 to 5 � m in a relatively compact instrument. This flexibility places
significant demands on the software that will control the myriad of optics, gratings, fil-
ters, and observing modes that ARIES will require. Thoughtful design will allow the
ARIES software to be easily maintained, adapted and extended toward new capabilities
and even entirely new instruments at Steward Observatory. The following characteristics
define the most demanding software requirements that we require:

� Low Latency: Integrating with an adaptive optics (AO) system requires that soft-
ware requests be carried out with a minimum of overhead and latency. Although
ARIES itself should not need a dedicated real time OS, its kernel should be opti-
mized for the lowest reasonable latency. The control software will also be scheduled
to at a higher priority than most other processes on the system. A baseline specifi-
cation for latency might require that 90% of all software requests be initiated within
1 millisecond.

� Fully Modular Design: Breaking up the control software into distinctive, indepen-
dent modules will allow the software to be more adaptable to other (future) instru-
ments. The user interface should be decoupled from the actual hardware control, for
example. This modularity improves code maintainability and allows one to work
on an individual part of an instrument without interfering with other components.

� Remote Operation: Although adaptive optics systems are sufficiently complicated
that remote observing with ARIES is unlikely in the near future, it is still impor-
tant to provide full remote access via ethernet. Instrument status and health can be
monitored from Tucson, and 2 AM troubleshooting sessions can be more easily and
conveniently diagnosed and worked around.

� Open Source Components: Using Open Source Software as the foundation for the
instrument software provides lowest development cost, and critical independence
from commercial product obsolescence. High quality operating systems (e.g. Linux,
Darwin, FreeBSD), compilers (e.g. gcc) and development toolkits (e.g. GTK+) are
available which meet and often exceed the capability of commercial products.

� Observation Planning Tools: Visualization of the usable fields of view upon 2MASS
images, and visualizing the frequency coverage of echelle orders on the spectro-
scopic array is pivotal to making efficient use of observing time with ARIES.

� Data Visualization and Assessment: One of the most common problems with con-
trol software is assessing the quality of the data being taken. A separate quick-look
package that can perform sky subtraction, basic flat-fielding, and very simple aper-
ture photometry from a graphical interface is essential to an observer. A coarse
pipeline for reduction of echelle data is similarly necessary for ARIES spectroscopy.

� Data Storage and Organization: Data storage and organization is often the least-
considered aspect of instrument software development, yet it is one of the largest
long-term headaches. We aim to develop an automatic system that stores data,
writes observing logs, and databases all observations taken with ARIES for easy
retrieval.

To realize all of these goals, a control system centered upon the Linux operating system
is designed (Figure 1). Control of ARIES occurs via a Linux kernel 2.6 driver that com-
mands ARIES’ Leach camera controller via an internal PCI interface card. A low level
kernel interface naturally separates the divergent issues of 1) hardware access and 2) user
interface. A modular set of core functions with an “expert level” command line interface
yields full control over all aspects of the ARIES instrument. The same set of functions is
also accessed by a friendlier graphical user interface (GUI), which is what observers will
use. The GUI will represent a compromise between the complete flexibility of the com-
mand line, and the usability of a graphical interface. Naturally, it will utilize the “most
common” subset of the core functions, though the command line will also be accessible
in the GUI. Remote access can be readily established by running the control software re-
motely and transparently over the Internet by tunneling X11 over ssh. Secondly, a web
page with the latest instrument status can be displayed on any browser, even on PDAs.
Finally, the graphical user interface can be run separately on remote computers, and only
the instrument requests (not the entire graphical window itself) would be routed over the
Internet. The possibility of instantly mirroring acquired data to the remote computer can
also be considered.

2 ARIES Instrument Control System

We now explore each of these components in more detail.

2.1 Kernel Mode Drivers

All low-level hardware control is performed through kernel level interfaces. The advan-
tages of doing kernel-level access is speed (non-preemptibility), low latency and a high

2

degree of hardware abstraction. That is, user interface software can control an ADC by
performing basic read(), write(), and ioctl() operations upon a character device,
such as /dev/interfacecard/adc. The job of actually communicating with that card,
registering it with the system, handling power management, etc. is the responsibility of
the kernel driver itself, and not the higher level ARIES software. For ARIES, most of the
instrument control occurs through a PCI interface card, for which a usable kernel driver

interface card
Linux kernel

driver

core
camera

functions

graphical
user

interface

remote
user

interface

command
line

interface

disk storage
ARIES

Linux
userspace

environment

Figure 1: Block diagram of ARIES software system

3

exists. Additional coding of the kernel driver is necessary to use the card with Linux
kernel 2.6 and to improve error handling for robustness. Other hardware access, such as
serial or parallel communications, can be performed through the appropriate mainstream
kernel driver and can be entirely decoupled from ARIES software development.

2.2 Core Functions

A series of fundamental functions serve as the primary interface to the kernel mode hard-
ware drivers. Each function should have a focused scope, performing a particular task.
They are essentially “building blocks” that can be assembled and combined in various
ways to perform progressively more complicated tasks. They can be enhanced and ex-
panded to suit multiple instruments. They serve as the calls that actually do “real work”,
and are called by the various user interfaces. The baseline language will be “ordinary” C;
if a more object-based approach is deemed better, C++ or Objective C (both supersets of
basic C) may be used.

Examples of functions might be download ucode(),move motor(),write FITS(),
or activate array(). The astropci API for performing basic detector array opera-
tions constitutes an important part of the Core Functions. Some functions may in turn
call worker functions more specialized to a particular instrument or mechanism. Code
duplication will be minimized by separating “generic” code from “specific” code.

2.3 User Interfaces

The Core Functions described above provide a a library-like interface to the hardware,
but do not provide a user interface. One interface is not suitable for every circumstance
however. An instrument scientist debugging ARIES in the laboratory may require far
more flexibility and control over esoteric instrument features than the typical observer
at the telescope. Furthermore, each instrument may warrant its own specific interface.
It becomes necessary, then, to decouple the user interface not only from the kernel-level
drivers, but also from the Core Functions. Multiple/different user interfaces can simply
call upon the desired subset of Core Functions.

2.3.1 Command Line Interface

The command line interface is designed to draw upon all functionality in the Core Func-
tions. It is designed for an instrument scientist (or advanced observer) for debugging,
optical alignment, etc. The terseness of the command syntax means that the operator
must know what [s]he is doing, though the commands and parameters should be fairly
intuitive to a fairly seasoned infrared observer. All commands provide fairly verbose
feedback and quantitative measurements of the instrument performance. The command
language is very loosely based upon the basic syntax of the NOAO “wildfire” control

4

system. Specifying a command without arguments will show the current status of that
command, and show the set of possible changes. A set of commands and parameters
follows:

Instrument Commands

� abort: terminates the current observation and discards any data

� activate: activates the detector array

� deactivate: deactivates the detector array

� diskspace: ask how many images can fit on the current filesystem

� download � ucode � : kill off any microcode that is running, download new mi-
crocode from file � ucode � , and run it

� setup: configure the detector array, set bias levels for the 4 quadrants, etc.

� freeze � on | off � : disallow any changes to the detector array configuration,
aside from activating and deactivating

� status: print thermal sensor, motor encoder and detector array status. This is the
basic housekeeping command.

� motor control: Motion of the slit, grating, optics, prober, adc, array or
filter motors can be performed by typing their names, followed by the position
to travel to. Simply typing the name will show the current position, and the range of
available positions. Example: grating 4712.9 wn or filter Ks, optics f15

or slit 0.2.

� observe: initiate an observation. The current set of observing parameters is dis-
played for confirmation or editing, after which the observation is executed and data
saved and archived.

� go: a shortcut for observe, performing an observation using the current setup
without display or confirmation.

� help � command � : display basic help for a command

� move � ra|dec|alt|az � � N � : Move telescope in a given direction by N arcsec-
onds

� wobble � RA ��� DEC � Specify a telescope wobble vector, offset in arcseconds from
the current position in RA/DEC. This provides nodding observations that allow
background subtraction.

5

� raster � L ��� M � � N � : Raster the telescope in an LxM matrix with N arcsecond
grid spacing. The offset for sky subtraction is specified in the wobble command,
and relative to the raster map center.

� movie: Continual readout of the array with current parameters

� bedtimeA shortcut for viewer dark, slit blank, lyot dark, and deactivate
to be used at the end of a night of observing.

Instrument Parameters

� coadds: number of hardware-coadded frames to be accumulated to a single saved
image.

� reads: number of low noise reads. 2 reads represent double sampling, � 2 represent
multiple reads.

� pics: number of images to obtain

� exptime: integration time in seconds

� filename: base filename for saved data

� index: number index to append to the filename

� directory: specify the directory for saved data

� jitter: specify a small amount of random motion to each move in a nodding or
raster mode observation.

� comment: add a comment to the FITS header

� title: add a title to the FITS header

� mode: specify observing mode, such as “stare”, “chop”, or “nod”

2.3.2 Graphical User Interface

Although it will contain a more restrictive subset of functionality represented by the Core
Functions, a graphical user interface (GUI) is more intuitive and less imposing than the
corresponding command line interface. The GUI will include a text field in which text-
mode commands can also be issued. The interface will be prototyped in parallel using
both the GNUstep (using Objective C) and GTK+/GNOME (using C) development envi-
ronments. The interface model will use a tabbed interface for organization and to mini-
mize screen clutter, and will follow the most sensible user interface guidelines published
by the GNOME Foundation and NeXT/Apple. Final decisions regarding the GUI await
the first prototypes.

6

2.3.3 Remote User Interface

The remote user interface development follows two principal paths. The first remote ac-
cess method (Figure 2a) requires no additional work; it simply exploits the remote view
capabilities of X11 (X Windows). The remote operator can log into the ARIES control com-
puter via ssh and start a new instance of the control software, displaying on the remote
machine (UNIX, Mac OS X, or MS Windows with X11 software installed). The second
method (Figure 2b) runs the control software on the remote machine (UNIX, Mac OS X)
and can simply send instrument requests to the ARIES computer using network sockets.

A fundamental design decision concerning both textual and graphical interfaces is
the use of network sockets in general. One design would have network sockets be the
default communication mechanism for all commands, local or remote. Constructed in
this fashion, the physical location of the observer (i.e. local or remote) is merely a detail
and not relevant to the core code.

Aries
computer

remote host
w/ X11 forwarding

over sshethernet

entire GUI window
sent over network

Aries
computer

remote host
w/ native GUIethernet

raw commands/data sent
over network socket

data

commands

Figure 2: Methods of remote operation include remotely exporting the X11 display, and
sending commands from a remote interface over a network socket.

3 Visualization of Data Products

3.1 Quick-Look Data Processing

SAO DS9 will be used to display images with the command-line interface, and can also
be used in place of the rudimentary image display built into the graphical user interface
(GUI). The GUI display routine will optionally display a sky-subtracted image, based
upon an average of the nearest two adjacent sky frames. It will eventually be capable of
displaying panoramic raster maps (averaging pixel values and aligning images by shared
point sources in adjacent frames). Spectroscopic data can be coarsely processed by 1)
identification of the continuum in each order, 2) summing an aperture defined by the
FWHM of the seeing profile, and 3) displaying the resulting 1D spectrum with an ap-
proximate wavelength solution identified from atmospheric features. OH airglow lines

7

will be used for
�
�

����� � m, and a composite spectrum will be computed from the HI-
TRAN molecular database for

�
�

����� � m.

3.2 Data Archival

In our automatic data archival scheme, every image taken with ARIES is saved. The
data is saved locally, but optionally could be mirrored to a networked filesystem. The
FITS header for each image is written into a relational data base program (e.g. MySQL
or Postgres) which facilitates efficient logging and retrieval of the data. The observer
can execute a separate graphical program which accesses the database, consolidates the
requested scans into a list, provides tools for inspecting the raw data, and most impor-
tantly, co-adds and background-subtracts the data for viewing. The output is a set of FITS
files, or alternately a FITS cube. In principle, access to these data products to the greater
scientific community could be provided through a (Java-based) web browser interface
that will interface with MySQL and the FITS data cubes.

3.3 Observation Planning Tools

As a guide to new observers, two new tools for observation planning will be developed.
An imaging tool will overlay 2MASS data release images atop the ARIES fields of view
for the 4 different “plate” scales. A spectroscopy tool will show the frequency coverage
of the echelle orders on the detector array for a given grating angle.

8

