A crash course in running the simplified "escape" model

In this example, we will use ¹²CO J=2-1 and ¹³CO J=2-1, your data from the SMT.

- 1) In *Miriad*, generate the following images for your field using the *moment* command:
 - a. ¹²CO peak intensity (mom=-2)
 - b. ¹²CO and ¹³CO integrated intensity (mom=0)
 - c. ¹²CO and ¹³CO line width (mom=2)
- 2) Use imblr to remove any blanked or masked pixels from the maps.
- 3) Use the *imstore* command (mode=dump) to write the contents of each image to text files. They should all have the same size! Make sure that the *solve_for_N.pl* script references those filenames. If you want to change the default linewidth, set the sensitivity limit, or the density, change them at the top of *solve_for_N.pl* now.
- 4) Run the *solve_for_N.pl* script. It will generate a 12 CO column density image (assuming 12 CO/ 13 CO=50) and a radiation field image (based on the 12 CO brightness temperature and T_{kin}). This will take a few minutes.
- 5) You can turn the N(CO) and radiation field maps into a total hydrogen column density map using the $CO_{to}H.pl$ script. If you edit the script to divide that result by 1.8×10^{21} , you will have a reasonable approximation of the extinction, A_V , in magnitudes.
- 6) You can then read any of the generated images back into Miriad by using the *imload* command. For example, if the original map had dimensions of 370x435, the command would be: *imload in=escapemap.csv imsize=370,435,1 out=escapemap*
- 7) It may be useful to copy some header variables from your original Miriad files into your new "escape" map using the copyhd command:

 copyhd in=12comap out=escapemap

```
items=cdelt1,cdelt2,crpix1,crpix2,ctype1,ctype2,epoch,restfreq,telescop,object
```